Soạn Toán 10 Chương II Hàm Số

Toán 10 Chương II Hàm Số

A. Tóm tắt kiến thức

Định nghĩa hàm số:

Cho D ∈ R, D ≠ Φ. Một hàm số xác định trên D là một quy tắc f cho tương ứng mỗi số x ∈ D với một và duy nhất chỉ một số y ∈ R. Ta kí hiệu:

f: D → R

x → y = f(x)

Tập hợp D được gọi là tập xác định (hay miền xác định) x được gọi là biến số (hay đối số), y0 = f(x0) tại x = x0.

Một hàm số có thể được cho bằng một công thức hay bằng biểu đồ hay bằng bảng.

Lưu ý rằng, khi cho nột hàm số bằng công thức mà không nói rõ tập xác định thì ta ngầm hiểu tập xác định D là tập hợp các số x ∈ R mà các phép toán trong công thức có nghĩa.

Đồ thị

Đồ thị của hàm số: f: D → R

x → y = f(x) là tập hợp các điểm (x; f(x)), x ∈ D trên mặt phẳng tọa độ.

Sự biến thiên

Hàm số y = f(x) là đồng biến trên khoảng (a; b) nếu với mọi x1, x2 ∈ (a; b) mà x1 < x2 => f(x1) < f(x2) hay x1 ≠ x2 ta có .

Hàm số y = f(x) là nghịch biến trên khoảng (a; b) nếu với mọi x1, x2 ∈ (a; b) mà x1 < x2 => f(x1) > f(x2) hay x1 ≠ x2 ta có

Tính chẵn lẻ của hàm số

Hàm số f: D → R

x → y = f(x) được gọi là hàm số chẵn nếu: x ∈ D => -x ∈ D và f(-x) = f(x), là hàm số lẻ nếu x ∈ D => -x ∈ D và f(-x) = -f(x).
Đồ thị của hàm số chẵn có trục đối xứng là trục tung. Đồ thị của hàm số lẻ nhận gốc O của hệ trục tọa độ làm tâm đối xứng.

B.Giải Bài Tập SGK Toán 10

Bài 1. Tìm tập xác định các hàm số:

Đáp án:

  1. a) D = {x ∈ R / 2x + 1 ≠ 0 } hay D = R\{-1/2}
  2. b) D = {x ∈ R / x2 + 2x – 3 ≠ 0 } hay D = R\{1; -3}
  3. c) D = {x ∈ R / √(2x + 1) và √(3 – x) xác định}

= {2x + 1 ≥ 0 và 3 -x ≥ 0} = {x ≥ -1/2 và x ≤ 3} = [-1/2; 3]

Chú ý chỉ cần viết gọn

  1. a) x ≠ -1/2 b) x ≠ 1 và x ≠ -3

Bài 2. Cho hàm số:

Tính giá trị của hàm số tại x = 3, x = -1, x = 2.

Đáp án:

Tại x = 3 ≥ 2. Thay x = 3 vào y = x + 1 ta có y = 4

Tại x = -1 < 2. Thay x = -1 vào y = x2 – 2, ta có y = (-1)2 – 2 = -1

Tại x = 2 ≥ 2. Thay x = 2 vào y = x + 1 ta có y = 3.

Bài 3. Cho hàm số y = 3×2 – 2x + 1. Các điểm sau có thuộc đồ thị hay không?

a) M(- 1;6); b) N(1;1); c) P(0;1).

Đáp án:
a) Điểm A(x0; y0) thuộc đồ thị (G) của hàm số y = f(x) có tập xác định D khi và chỉ khi:


Tập xác định của hàm số y = 3×2 – 2x + 1 là D = R.

Ta có: -1 ∈ R, f(-1) = 3(-1)2 – 2(-1) + 1 = 6

Vậy điểm M(-1;6) thuộc đồ thị hàm số đã cho.

b) Ta có: 1 ∈ R, f(1) = 3 (1)2 – 2(1) + 1 = 2 ≠ 1.

Vậy N(1;1) không thuộc đồ thị đã cho.

c) P(0;1) thuộc đồ thị đã cho.

Bài 4. Xét tính chẵn lẻ của hàm số:

a) y = |x|; b) y = (x + 2)2

c) y = x3 + x; d) y = x2 + x + 1.

Đáp án:

a) Tập xác định của y = f(x) = |x| là D = R.

∀x ∈ R ⇒ -x ∈ R

f(-x) = |-x| = |x| = f(x)

Vậy hàm số y = |x| là hàm số chẵn.

b) Tập xác định của

y = f(x) = (x + 2)2 là R.

x ∈ R ⇒ -x ∈ R

f(-x) = (-x + 2)2 = x2 – 4x + 4 ≠ f(x)

f(-x) ≠ -f(x) = -x2 – 4x – 4

Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.

c) D = R, x ∈ D ⇒ -x ∈ D

f(-x) = (-x3) + (-x) = -(x3 + x) = -f(x)

Vậy hàm số đã cho là hàm số lẻ.

d) Hàm số không chẵn cũng không lẻ.

Chúc các bạn học và thi tốt!

You might like

About the Author: Nguyễn Thị Cẩm Tú

Trả lời

Email của bạn sẽ không được hiển thị công khai.